Crosstalk between Gi and Gq/Gs pathways in airway smooth muscle regulates bronchial contractility and relaxation.

نویسندگان

  • Dennis W McGraw
  • Jean M Elwing
  • Kevin M Fogel
  • Wayne C H Wang
  • Clare B Glinka
  • Kathryn A Mihlbachler
  • Marc E Rothenberg
  • Stephen B Liggett
چکیده

Receptor-mediated airway smooth muscle (ASM) contraction via G(alphaq), and relaxation via G(alphas), underlie the bronchospastic features of asthma and its treatment. Asthma models show increased ASM G(alphai) expression, considered the basis for the proasthmatic phenotypes of enhanced bronchial hyperreactivity to contraction mediated by M(3)-muscarinic receptors and diminished relaxation mediated by beta(2)-adrenergic receptors (beta(2)ARs). A causal effect between G(i) expression and phenotype has not been established, nor have mechanisms whereby G(i) modulates G(q)/G(s) signaling. To delineate isolated effects of altered G(i), transgenic mice were generated overexpressing G(alphai2) or a G(alphai2) peptide inhibitor in ASM. Unexpectedly, G(alphai2) overexpression decreased contractility to methacholine, while G(alphai2) inhibition enhanced contraction. These opposite phenotypes resulted from different crosstalk loci within the G(q) signaling network: decreased phospholipase C and increased PKCalpha, respectively. G(alphai2) overexpression decreased beta(2)AR-mediated airway relaxation, while G(alphai2) inhibition increased this response, consistent with physiologically relevant coupling of this receptor to both G(s) and G(i). IL-13 transgenic mice (a model of asthma), which developed increased ASM G(alphai), displayed marked increases in airway hyperresponsiveness when G(alphai) function was inhibited. Increased G(alphai) in asthma is therefore a double-edged sword: a compensatory event mitigating against bronchial hyperreactivity, but a mechanism that evokes beta-agonist resistance. By selective intervention within these multipronged signaling modules, advantageous G(s)/G(q) activities could provide new asthma therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current issues with beta2-adrenoceptor agonists: pharmacology and molecular and cellular mechanisms.

Beta2-adrenoceptors are widely, almost ubiquitously, expressed. Activation of these receptors on bronchial smooth muscle by short- and long-acting beta2-adrenoceptor agonists causes bronchodilation. Here, the beta2-adrenoceptor is linked by the G protein, Gs, to adenylyl cyclase, which increases cyclic adenosine monophosphate (cAMP), thus activating protein kinase A, which affects calcium level...

متن کامل

Role of G proteins in agonist-induced Ca2+ sensitization of tracheal smooth muscle.

Increased sensitivity to intracellular Ca2+ concentration ([Ca2+]) is an important mechanism for agonist-induced contraction of airway smooth muscle, but the signal transduction pathways involved are uncertain. We studied Ca2+ sensitization with acetylcholine (ACh) and endothelin (ET)-1 in porcine tracheal smooth muscle by measuring contractions at a constant [Ca2+] in strips permeabilized with...

متن کامل

G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle.

G protein-coupled receptors receive many of the neural, hormonal, and paracrine inputs to gastrointestinal (GI) smooth muscle cells. This article examines the major G protein-coupled receptors, G proteins, and effectors that mediate responses to enteric neuromuscular transmitters. Excitatory transmitters primarily couple through Gq/11 and Gi/Go proteins and elicit responses via formation of ino...

متن کامل

The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness.

Smooth muscle contraction is mediated by Ca2+-dependent and Ca2+-independent pathways. The latter Ca2+-independent pathway, termed Ca2+ sensitization, is mainly regulated by a monomeric GTP binding protein RhoA and its downstream target Rho-kinase. Recent studies suggest a possible involvement of augmented RhoA/Rho-kinase signaling in the elevated smooth muscle contraction in several human dise...

متن کامل

Second messengers, ion channels and pharmacology of airway smooth muscle.

The airway smooth muscle cell is the chief effector cell governing the control of airway calibre in the human lung. The contractile state of the airway smooth muscle cell is predominantly influenced by the balance of constrictor and relaxant stimuli. Agents such as histamine and acetylcholine cause airway smooth muscle cells to contract through activation of specific cell surface receptors and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 117 5  شماره 

صفحات  -

تاریخ انتشار 2007